An intrinsic semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities. In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p.
An extrinsic semiconductor is a semiconductor that has been doped, that is, into which a doping agent has been introduced, giving it different electrical properties than the intrinsic (pure) semiconductor.
An n-type (negative-type) extrinsic silicon semiconductor is a semiconducting material that was produced by doping silicon with an n-type element of Group V A, such as P, As, or Sb. Consequently, electrons are the majority charge carriers of the material.
A p-type (positive-type) extrinsic silicon semiconductor is a semiconducting material that was produced by doping silicon with an p-type element of group III A, such as B, Al, or Ga. Since the dopants are acceptor atoms, holes are the majority charge carriers of the material.